GaAs(Si) as a Low-Background Scintillator for Direct Detection of Dark Matter

Stephen E. Derenzo Lawrence Berkeley National Laboratory

Outline

- History and Objectives
- LBNL scintillator research facility
- GaAs crystal samples
- Preliminary measurements
 - X-ray excited emission spectrum
 - Pulsed X-ray time response
 - Optically excited emission spectrum
- Conclusions
- Path forward

History and Objectives

Rouven Essig, Andrea Massari, Adrián Soto, and Tien-Tien Yu, Stony Brook University, NY proposed that

A low band-gap scintillator and cryogenic photodetectors could detect photons from electrons excited by DM interactions

Improved reach for MeV DM

Single photon sensitivity and low backgrounds

Complementary to other approaches

=> Paper in review (Nal, Csl, GaAs)

Matt Pyle, UC Berkeley

Importance of considering afterglow

LBNL Scintillator research group

Decades of scintillator research, including cryogenic semiconductor scintillators

GaAs measurements

Why GaAs for Detecting Electrons Excited by DM?

- Why scintillation rather than charge collection?
 - Afterglow decays, dark current does not
 - No spontaneous electron excitation at 0K and zero E field excitation energy = 4000 kT at 4K
 - Can detect individual photons with very low background
- Why Nal or Csl?
 - Lower band gap (1.5 vs. 6 eV)
 lower DM mass reach
 4x more photons for background rejection and spectroscopy
 - not hygroscopic
- Why not another semiconductor?
 - For >1 photon detection GaAs is direct-gap and faster than indirect gap Si and Ge
 - Commercially grown as large single crystals
 - GaAs(Si) cryogenic QE 60% reported*
 - * Cusano, Solid State Communications, 2:353-358, 1964

Scintillator, Photodetectors and Active Shielding

- 10 x 10 x 10 cm (5 kg) GaAs crystal
- Transition edge sensors or µwave kinetic inductance detectors
- BGO scintillator active shield

LBNL Scintillator Research Group

funded by NNSA/NA22 and DHS/DNDO

Stephen Derenzo

Edith
BourretCourchesne

Gregory Bizarri

Post-docs, technical staff

Open-access database of scintillation properties http://scintillator.lbl.gov

Optical and X-Ray Excited Luminescence Spectrometer

Optical monochromator
Rotating anode X-ray machine (40 kV, 100 mA)
Spectrometer with order-sorting filters, two gratings, and CCD readout

(250-970 nm)

Pulsed X-Ray Time Response Measurements

Also: laser diodes for pulsed optical excitation

LBNL Crystal Growth Facility (Bldg 64)

Unique US facility to screen, optimize, and produce detector materials in single crystal form

- •8 Bridgman/Stockbarger furnaces
- 3 Mirror furnaces
- 2 Czochralski furnaces
- •2 Micro-pull down furnaces
- 2 Zone-refiners
- Multiple box and tube/rocking furnaces
- Drying ovens

Czochralski furnace/medium pressure

GaAs Crystal Samples

GaAs properties

Density 5.32 gm/cm³

Band gap 1.52 eV (direct) near 0K

Refractive index 3.3 (infra-red)

- GaAs(As) (semi-insulating)
 - Excess As atoms on Ga sites (antisite defects)
 - Fermi level pinned near the center of the band gap
 - High electrical resistivity
- GaAs(Si) n-type
 - Si⁴⁺ atoms on Ga³⁺ sites (donor defects)
 - Si⁴⁺ ions are charge compensated at room temperature with conduction band electrons
 - Low electrical resistivity at room temperature
 - Donor-bound exciton emission at cryogenic temperatures

Emission spectrum at 10K

Wavelength (nm)

Sub-eV 2016 Conference LBNL, Dec 8, 2016

GaAs(Si) luminosity vs. temperature 40 keVp X-ray excitation

Optical excitation/emission spectrum 10K

GaAs (Si) Decay Spectrum

Effect of Si doping on GaAs cryogenic data

	GaAs(semi- insulating)	GaAs(Si)
X-ray excited luminosity (photons/MeV)	<0.05	30,000*
X-ray excited emission	Not detected	850 nm (9%) 942 nm (91%)
Optically excited quantum efficiency		60%**

^{* &}gt;970 nm excluded

^{**} Cusano, Solid State Communications, 2:353-358, 1964 Scintillation luminosity from separated e-h Optical excitation QE from close e-h

Conclusions

- Silicon doping has a profound effect on the luminescence of GaAs (>500 x undoped)
- X-ray luminosity 30,000 photons/Mev from 10K to 120K
- QE 60% from Cusano 1964
- There are two luminescent centers
 - 850 nm (0.06 eV from band edge) thermal quenching kT ~ 4.3 meV
 - 930 nm (0.19 eV from band edge) thermal quenching kT ~ 12 eV
- 90% of the light is in the 930 nm component

Path Forward

- Initial components
 - Commercial boule GaAs(Si)
 - Cryogenic photodetectors (TES, APD)
- Emission tests
 - Emission intensity and spectrum optical and X-ray excitation
 - Time response using pulsed X-rays
 - Gamma ray Compton spectrum
 - Afterglow
 - Cosmic rays
- Scale-up measurements
 - 1 kg crystal in 4K cryostat
 - TES photodetectors on 6 sides
 - Deep mine
 - 1 vs. 2 photon detection
 - Active shielding
 - Hollow crystal

Thank You for Your Attention

